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Design and testing of pacemaker is challenging because of the
need to capture the interaction between the physical processes
(e.g. voltage signal in cardiac tissue) and the embedded software
(e.g. a pacemaker). At the same time, there is a growing need
for design and certification methodologies that can provide
quality assurance for the embedded software. We describe recent
progress in simulation-based techniques that are capable of
ensuring guaranteed coverage. Our methods employ discrep-
ancy functions, which impose bounds on system dynamics, and
proceed through iteratively constructing over-approximations of
the reachable set of states. We are able to prove time bounded
safety or produce counterexamples. We illustrate the techniques
by analyzing a family of pacemaker designs against time duration
requirements and synthesize safe parameter ranges. We conclude
by outlining the potential uses of this technology to improve the
safety of medical device designs.

Index Terms—Dbiological networks; hybrid systems; invariants;
verification; safety; pacemakers.

I. INTRODUCTION

Computer simulations are an all-powerful tool for under-
standing the behavior of complex systems such as implantable
medical devices. In many cases, the design and test processes
are centered around creating models and prototypes, and then
studying them through simulations. The term ‘“simulation”
covers considerable ground, ranging from hardware-in-the-
loop (HIL) simulations where some of the components are
real artifacts, to numerical simulation of mathematical models,
with other approaches in between. While simulations are rela-
tively easy to compute, it can be hard to draw useful inferences
from them. One crucial problem is that of coverage. A single
simulation of a model, done carefully, informs us about one
behavior of the system. Most systems produce uncountably
many behaviors with different inputs from the environment and
different choices of model parameters. Any study involving
a finite number of simulations necessarily leaves out a large
proportion of these behaviors, and this lack of coverage makes
it impossible to draw robust and useful conclusions about
the behavior of the system. Some studies [H], [1] exploit
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stochastic optimization techniques to improve the possibility
of catching a bug, however these approaches cannot provide
a sure guarantee of safety.

Consider the coverage problem in the context of design
and testing of implantable cardiac pacemakers. Pacemakers
normally have sensors to detect events directly in the heart
tissue, such as atrial sense and ventricular sense. Using the
information from the sensor, the pacemaker decides whether
and when to generate a stimulus to the heart. In order to
test the pacemaker in its “natural” environment, we have to
close the loop with an appropriate model of the human heart.
This by itself is a challenging problem, although there are
significant benefits to this approach and remarkable progress
has been made in the past decade [I]-[B]. For instance, the
model presented by Grosu et al [3] describes the heart as
a network of automata, where each automaton models the
currents and voltages in a fragment of the cardiac tissue.
Each automaton model has several parameters, such as the
initial membrane voltage and the resistance of the conduction
channels. In addition, the pacemaker itself has parameters, e.g.,
the frequency and the magnitude of the stimulation pulses.
Many of these parameters cannot be measured precisely due
to the uncertainty in their values. Even if we assign specific
values to all parameters and generate a simulation, to draw
inferences about the behavior of the whole system we need
to cover sets of behaviors that arise from parameter ranges.
On the other hand, by excessive inference, we may over-
approximate the behavior of the system and produce false
negative. This “accurate coverage” problem is particularly
challenging.

Software bugs and failures resulted in 24% of all medical
devices recalls in 2011. According to the US Food and Drug
Administration (FDA), errors in embedded software have led
to a substantial increase in safety alerts or even patient death.
Combined with the relative lack of standardization in the
field of medical devices, there is an urgent need to develop
methodologies for ensuring correct behavior of embedded
pacemaker software and their certification. In this work we
focus on effectively solving the coverage problem for medical
cyber-physical systems.

Until recently, deriving coverage guarantees was only pos-



sible for microprocessors and programs. While massive, these
essentially digital systems lack the continuous nonlinear dy-
namics typical of electrical conduction in a cardiac cell.
Nor do they involve the “hybrid” behavior that arises in the
interaction of a physical process (say, voltage oscillations)
with embedded software (pacemaker). Over the last few years
we have begun to witness the development of techniques
that combine computer simulations with algorithmic static
analysis to obtain guarantees about behaviors of these types
of complex systems. A number of recent studies, by us and
others, demonstrate the promise of these techniques in finding
design flaws and uncovering model inconsistencies [Z]-[H].

Our approach builds on algorithms that cover a set of
model behaviors from a single simulation of the model.
Given a model, to check if it violates the property, we
over-approximate its behaviors with increasingly higher pre-
cision until we reach a conclusion. For constructing over-
approximations, we exploit continuity of the trajectories. First,
a numerical simulation of a single behavior of the model
is computed for a particular choice of the parameters. This
simulation is then “bloated” by a factor to over-approximate
all behaviors that arise from similar choices. Repeating this
simulate-and-bloat process for different choices of the initial
states and parameter values, we can over-approximate all
possible behaviors that can arise from all parameter choices.
Further, it is important that the over-approximation can be
made more precise so that false positives can be eliminated.
To turn this idea into an algorithm, we introduced the notion
of discrepancy which (a) upper bounds the distance between
two neighboring behaviors and (b) the bound converges to zero
as the parameter choices for the two behaviors get closer and
closer [4], [6]. It has been shown that, for an expressive class
of models, indeed one can find discrepancy functions that meet
these criteria [5].

For the pacemakers, a key property or requirement is that the
cardiac cell voltage oscillations (action potentials) induced by
the pacemaker are regular (as in Figure 2d) and not alternating
(as in Figure Xd). The alternating behavior is well-known to
be a precursor for cardiac arrhythmic disorders, including ven-
tricular tachycardia and fibrillation [B]. Another requirement
is that, even if initially the oscillations are irregular, they then
converge to a regular pattern. Our simulation-based verification
algorithms can automatically check that these properties hold
not just for a specific choice of the model parameters, but for
the whole range of possible values. This provides assurance
about uncountably large sets of behaviors from a finite number
of simulations.

While we believe that the simulation-based verification
technology for nonlinear hybrid systems is poised to take-on
industrial challenges, we conclude this article with an overview
of the open research questions and by highlighting the more
practical issues that need to be addressed for this technology to
be adopted in the design and certification of implanted medical
devices.

II. MODELS AND REQUIREMENTS FOR EMBEDDED
MEDICAL DEVICES

The first step for model-based design and analysis is to
construct a model of the system. Thanks to vigorous research
activities over the past two decades, now there are several
good choices for modeling cyber-physical systems. Although
we use the language of the Hybrid Input/Output Automata
framework [Y], the analysis methods that we develop are not
particularly sensitive to this choice.

The key component of our framework is a hybrid 1/O
automaton (HIOA)—a (possibly nondeterministic and non-
linear) state machine whose state variables evolve discretely
and continuously. The discrete transitions are written in the
usual precondition-effect style and the continuous evolution is
described by differential and algebraic equations. The solu-
tions of these equations are called trajectories. Furthermore,
an HIOA can share information over continuous variables
and discrete transitions with other automata in the system.
This is useful for modeling large systems in a modular or
compositional fashion.

Example 1. A HIOA model of a cardiac cell is shown in Fig-
ure A [U0]. The four discrete locations Resting, Stimulated,
Plateau, and Upstroke capture the four phases of the action
potential cycle of the cell. The continuous variable v models
the membrane voltage and c measures time elapsed since
last Upstroke. The input w captures the diffusion effect of
the neighboring cells and stim is the input stimulation from
the pacemaker. The evolution of these continuous variables
is described by linear differential equations. The transitions
define instantaneous changes. For example, preconditions on
the membrane voltage such as v > V; determine when the
automaton transitions from Resting fo Upstroke fo Plateau in
the absence of pacing. The transitions to and out of Stimulated
model the influence of stim from the pacemaker.

Figure [A shows a larger HIOA obtained by composing
five HIOAs: Atrium and Ventricle are models of individual
oscillators as in Figure ld. Each Delay automaton produces a
delayed impulse when it detects an input spike. The pacemaker
(PM) records the intervals between two successive ventricle
and atrium pulses and, if either of the intervals exceeds the
threshold called Lower Rate Interval (LRI), then it stimulates
Atrium. Note that in Fig [A there is a connection from the
ventricle to the atrium. This allows modeling the so called
retrograde conduction of the heart, which is the transmission
of a cardiac impulse from the ventricles to the atria. However,
to make full use of it, one has to employ a more physiologically
accurate cell model (see Section [M).

An execution of a hybrid automaton records the evolution of
the variables for a particular choice of the initial state and all
other parameters of the model. Formally, a bounded execution
fragment is a finite sequence of trajectories &g,&q, ..., such
that, from the last state of &; to the first state of &4, there
is a valid transition of the automaton. In Figure 4, we plot
an execution in which the atrium (red) and the ventricle
(green) stimulate each other and the pacemaker does nothing.
If the delay between the atrium and the ventricle is higher,
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(a) Model of a single cardiac cell oscillator. The hybrid automaton
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(b) Model of the whole heart-pacemaker interface. The model has
5 components. The Atrium and Ventricle are HIOA presented in
Fig. [E. PM is the pacemaker module.

Fig. 1: Models of the cardiac cell and the heart-pacemaker interface.

the pacemaker (blue) activates periodically (Figure PH). For
even larger delays the atrium can be stimulated both by the
pacemaker and the ventricle (Figure 2d).

A state of the automaton is reachable if it is reached at
some point along some execution. Requirements can be stated
in terms of invariant assertions involving the variables of the
automaton model. For example, we examine an invariant that
the heart rate remains in a proper interval. This requirement
Inv; defines the set of states of the model that satisfy it. Then,
to infer that all behaviors of the model satisfy this requirement,
it suffices to check that the set of reachable states of the model
is contained in the set defined by Inv;.

The design task of the pacemaker is to choose the value of
LRI such that the frequency of visiting Upstroke is always
in some acceptable range. For a ventricle cell the frequency
of visiting the Upstroke location is equivalent to the heart
rate. This requirement can be stated as an invariant of the
complete HIOA by adding auxiliary variables. More generally,
LRI should be chosen so that it meets this requirement for a
range of delay values that arise from the uncertainty in the
physiological parameters. It is also useful to decide a range
of safe values for LRI so that the clinician can make a choice
from that range based on other health-related factors.

III. THE PRINCIPLE OF SIMULATION-BASED
VERIFICATION

For a given model we consider the bounded time invariant
verification problem, which is parameterized by a time bound,
a compact set of initial states and parameter ranges, and a set
of unsafe states. The aim is to decide if there exists a particular
choice of an initial state and parameter valuations that leads
to a behavior that reaches an unsafe set. The simulation-
based verification algorithm creates a finite cover of the set
of initial states with a representative point for each cover.
Next the simulator generates numerical approximations from
all representative points. Then by bloating each simulation
by an appropriate factor depending on the size of the cover it
represents, the verification algorithm over-approximates all the

behaviors from the cover. By doing so, the union of the bloated
simulation is an over-approximation of the reachable states of
the system. If the over-approximation proves the invariant or
produces a counterexample the algorithm terminates. Other-
wise, it creates finer covers of the initial states and repeats the
earlier steps to compute more precise over-approximations.

In order to make this procedure sound, the bloating factor
should be large enough so that each bloated simulation is
an over-approximation of the reachable states? from a neigh-
borhood of the initial state of the simulation. However, for
relative completeness (modulo the precision of the machine
and the robustness of the property), the computation can be
made arbitrarily precise by refining the covers. These two
opposing requirements are captured in the definition of a
discrepancy function of [4]: for an n-dimensional dynamical
system, it is any function S : R2" x R>¢p — R>¢ such
that (a) it gives an upper-bound on the distance between any
two trajectories &(z,t) and &'(z,t) of the system, namely
|€(x,t) — (2, t)| < B(x,2',t), and (b) it vanishes for any ¢
as x approaches «’. For linear ODEs, the discrepancy function
[ can be readily computed from the matrix norms, while
sensitivity analysis yields an alternative approach []. For
nonlinear models y(t) = f(¢,y(t)), the Lipschitz constant of f
gives an exponential discrepancy, and if a contraction metric or
incremental Lyapunov function can be computed then it gives
a much tighter bound [B]. In more recent studies, the notion
of discrepancy function is extended to capture the effect of
different inputs, namely input-to-state discrepancy [8], [6]. For
large models with many subsystems, such as the pacemaker
network in Fig. [H, the discrepancy of the overall system
can be composed from the input-to-state discrepancy of the
subsystems.

Simulations, discrepancy functions, and bloating yield over-
approximations of the reachable states of a dynamical system
from a set of initial states. By drawing more samples from the
initial set, computing the reachtubes, and checking whether
or not the reachtubes are contained in the invariant, we

'We call a bloated simulation a reachtube.
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Fig. 2: Three representative behaviors of the model. The red/green/blue curves correspond to the voltage of the atrium/ventri-

cle/stimulus respectively.

not only can prove time bounded invariants, but also find
counterexamples. That is, if the algorithm terminates and
returns “safe” or “unsafe”, then indeed the dynamical system
satisfies or violates the given invariant. Furthermore, if the
dynamical system robustly satisfies or violates the invariant,
then the algorithm is guaranteed to terminate®. In contrast
with statistical model checking [IT], where the output is
described by confidence intervals, this approach gives absolute
guarantees about all possible behaviors that can arise from the
choices in the model parameters.

In order to make this approach work for hybrid automata
with guards, mode invariants, and resets, and in particular
to produce counterexamples, we need one more key idea:
we need to distinguish reachtubes that must contain actual
executions of the automaton from those that are merely
artifacts of over-approximation. For example, if a reachtube
fragment is completely contained in the invariant of a location,
it must contain at least one actual behavior of the automaton.
This calculation of may and must reachtubes is propagated
with respect to the guards, invariants, and the reset maps of
the hybrid automaton to obtain the soundness and relative
completeness guarantees.

The above algorithm has been implemented in the publicly
available verification tool C2E2 [@], [IZ] and a compositional
approach is implemented in a Matlab toolbox [8]. C2E2 takes
as input a hybrid automaton model in an .xml format or
as a Stateflow™ diagram and performs verification of time
bounded invariants or temporal precedence properties.

IV. APPLICATIONS AND EXPERIMENTS

Using C2E2 and the Matlab-based implementation of the
above algorithms, we verify a number of properties for
several different models of the pacemaker-heart system. We
can also find safe parameter ranges for the pacemaker. We
build a Simulink/Stateflow model of a network of cardiac
cells composed with a pacemaker. Each cell or node in the
network is modeled by an HIOA which interacts with the
neighboring cells, and the pacemaker as described by Grosu

2A model A is said to robustly satisfy/violate a property P if there exists a
small € such that if the parameters of A are perturbed by e then the resulting
perturbed model A also satisfies/violates P.

N Omazx Sims Refs RT(s) V< Omag
3 2 16 0 104.8 v
3 1.65 16 0 103.8 v
3 1.5 NA NA 9.0 X
5 2 3 0 208.0 v
5 1.65 170 125 945.0 v
5 1.5 NA NA 63.4 X
8 2 3 0 240.1 v
8 1.65 73 9 2376.5 v
8 1.5 NA NA 119.7 X

TABLE I: Scaling with model size. N: number of cells in
the model, 6,,,,: threshold voltage defining invariant, Sims:
number of simulations, Refs: number of refinements, RT:
running time in seconds.

et al. in [B]. This model is more physiologically accurate
than the one we introduced in Example [. It enables us to
simulate the retrograde conduction. Each cell model has 4
continuous variables and 29 different sets of nonlinear ODE
describing different modes; a network with 8 cells can have 32
continuous variables and 29% different locations. This model
has a large set of behaviors that depend on the choice of
the parameters (e.g., initial membrane voltages, resistance
of channels, frequency of the pacemaker’s impulse outputs,
etc.). Analyzing these types of models is well beyond the
capabilities of traditional verification algorithms; nevertheless,
using the simulation-based approach we are able to verify
whether the membrane voltage of the cell remains within some
threshold 6,,,,,. [S]. Table I shows the typical verification times
for different model sizes.

Simulation-based verification can also check duration prop-
erties (time difference between two events) for a bounded
horizon. In Example [, one design task is to determine the
parameter LRI for a pacemaker such that the time difference
between the Atrium and Ventricle events can be maintained
within a desired range. The machine PM in Fig. I8 models
a family of pacemaker designs with LRI as a parameter in
the interval [a, b]. First, all instances of LRI in the model are
replaced with a dummy variable [. We specify [ as a constant
described by the ODE [ =0in every location. We initialize



LRI Delayl Delay2 Sims RT(s) 7T € Inv
[61,53] [50,51] [48,49] 6 5.7 v
[49,51] [45,46] [51,52] 14 21 v
[49,51] [49,51] [51,52] 27 76.2 X
[43,46] [41,44] [39,42] 24 40.6 v

TABLE II: Range of pacemaker designs (LRI values) for
which the required invariant is maintained and violated. LRI/
Delayl / Delay2: the range of values that LRI and delays of
Delay can take, Sims: number of simulations, RT: running time
in seconds.
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Fig. 3: Reach set of Example [0 with LR in the range [49, 51]
and the two delays in ranges [45,46], [51,52]. The time
duration property is satisfied in this case; however, we observe
that, if we decrease LRI by 1, the atrium (red) will get excited
twice in the last two cycles.

[ to take a value nondeterministically in the range [a, b]. This
modified version of PM captures all possible behaviors with
LRI in the desired range. In a similar manner, Delayl and
Delay2 can be modified to model a range of values for the
delay parameters between the Atrium and Ventricle.

With this model we can examine whether the family PM
of pacemaker designs meets the time duration property. We
are able the verify a range of design parameters for values
ranging up to 3ms or find a counterexample in tens of seconds.
Table O shows some of the ranges of parameter values for
which the invariant is provably preserved or violated. Reach
sets of the atrium (red), ventricle (green) and pacemaker (blue)
are shown in Figure B. This type of analysis can be used by a
clinician to determine a safe range of customization parameters
for the pacemaker based on the physiological characteristics
of the patient. From experimental results we observe that our
simulation-based verification technique scales to large models
(tens of variables and millions of locations) with reasonable
amount of uncertainty (several decision parameter).

V. OPPORTUNITIES AND CHALLENGES

The simulation-based verification technology for nonlinear
hybrid systems presented in this paper is poised to take on
the challenges in design and analysis of medical devices,
providing a rigorous foundation for methodologies needed for
their verification and certification. We enumerate some of the
open problems related to this approach.

In general, a nondeterministic model can have multiple
transitions happen or trajectories starting from the same initial
states. For example, the evolution of the continuous variables
may be captured by a differential inclusion. Verifying such
a model using simulation remains an open problem, since
current solvers can only simulate a single trajectory captured
by a differential equation.

While there is a rudimentary understanding of how to
generalize the simulation-based approach to handle unbounded
time properties for strictly periodic models, how to develop
a general theory and algorithms for the verification of such
properties is less clear, but also the logical next step.

A different application of bounded-time analysis arises in
the context of real-time patient monitoring, where it could
address the issue of (false) alarm fatigue for medical profes-
sionals. When can the reachtubes be computed fast enough and
accurately enough to become a tool for detecting anomalies?

Example M demonstrated that our verification algorithms
can be used to synthesize safe parameters for a given design.
This can be a useful tool in customization of medical devices.
The general problem of synthesis using simulations is only
beginning to be researched and there is a panoply of interesting
questions.

Of course, in addition, important questions have to be
addressed by practitioners before we see the first real appli-
cation: what is the technology insertion point in the design
cycle? How to get suitable models of the device and its
physiological environment? Where does the risk of failure
justify the engineering cost of this rigorous analysis? If these
questions are settled positively, at least for a few devices such
as pacemakers and infusion pumps, then they can help usher a
new generation of smart and algorithmically certified medical
devices.
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