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Abstract

We present a technique for bounded invariant verification of nonlinear networked dynamical systems with delayed intercon-
nections. The underlying problem in precise bounded-time verification lies with computing bounds on the sensitivity of trajectories
(or solutions) to changes in initial states and inputs of the system. For large networks, computing this sensitivity with precision
guarantees is challenging. We introduce the notion of input-to-state (IS) discrepancy of each module or subsystem in a larger
nonlinear networked dynamical system. The IS discrepancy bounds the distance between two solutions or trajectories of a module
in terms of their initial states and their inputs. Given the IS discrepancy functions of the modules, we show that it is possible
to effectively construct a reduced (low dimensional) time-delayed dynamical system, such that the trajectory of this reduced
model precisely bounds the distance between the trajectories of the complete network with changed initial states. Using the
above results we develop a sound and relatively complete algorithm for bounded invariant verification of networked dynamical
systems consisting of nonlinear modules interacting through possibly delayed signals. Finally, we introduce a local version of
IS discrepancy and show that it is possible to compute them using only the Lipschitz constant and the Jacobian of the dynamic
function of the modules.

I. INTRODUCTION

Numerical simulations are extensively used for analyzing nonlinear dynamical systems, yet for models with uncertainty in
initial states, parameters and inputs, finite number of simulations alone cannot give proofs for invariant properties. Several
recent papers [1]–[5] present simulation-based techniques for proving or disproving properties of such models. The details
vary to some extent, but the common theme is to combine finite number of numerical simulations with symbolic static analysis
to compute over-approximations of the infinitely many behaviors of the system that may arise from these uncertainties. In
other words, the knowledge obtained from the static analysis is used to cover infinitely many behaviors of the system from
finite simulation data.

For a dynamical system ẋ = f(x) and a particular initial state x, let ξx be the numerically computed trajectory from x for a
certain time bound T . From the continuous dependence of ξx on x, we know that all the trajectories from a neighborhood of x
will be close to ξx. With more information about the sensitivity of the trajectories to the initial state we get better quantitative
bounds on the distance between neighboring trajectories. This enables us to compute a tube around ξx, that contains all
possible trajectories from the neighborhood of x. The precision or the conservativeness of this bound impacts the quality of
the over-approximation, and therefore, the performance of verification with the above strategy.

For example, the Lipschitz constant of the dynamic function f gives a bound on the distance between the neighboring
trajectories that grows exponentially with time. Although checking Lipschitz continuity is generally undecidable, for certain
classes of functions Lipschitz constants can be inferred from elementary functions [6]. Stronger notions like sensitivity [1], [7],
incremental Lyapunov functions [8], and contraction metrics for dynamical system are used in [9] to obtain more practically
useful bounds.

Generalizing several of these properties, in [3] the authors introduced the notion of discrepancy function as a continuous
function (of the distance between initial states and time) characterizing the convergence or divergence rates of trajectories. It
was shown that if a nonlinear, switched, or hybrid system model is annotated with appropriate discrepancy function(s) then
the above approach gives a sound and relatively complete algorithm for verifying bounded time invariants.

Until recently, there were no general techniques for computing discrepancy functions (or for that matter, sensitivity, contraction
metrics and incremental Lyapunov functions) from the syntactic description of a dynamical system. One typically assumes a
template polynomial for the candidate function and then solves an optimization problem to find the coefficients. Finding these
annotations becomes increasingly difficult for larger models in which many components interact [10].

In this paper, we address this problem by proposing a compositional approach for automatically computing discrepancy
functions for dynamical systems that are created by composing many modules that interact over a (possibly delayed) network.
Consider a networked dynamical system A consisting of several interacting subsystems or modules A1, . . . ,AN . That is, the
input signals of a subsystem Ai are driven by the outputs (or states) of some set of other components. Let’s say that each Ai is
n-dimensional which makes A nN -dimensional. Our solution has several parts. First, building up on our previous work [4], [5]
we introduce new type of input-to-state discrepancy function (IS discrepancy) for each subsystem Ai. An IS discrepancy for
Ai (together with its witnesses) gives a bound on the distance between two trajectories as a function of (a) their initial states
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and (b) the inputs they experience. Using IS discrepancy of the modules we syntactically construct a reduced N -dimensional
dynamical system M . If the interconnections in the original network A has delays then so do the interconnections in the
reduced network. We show that the trajectories of M give a discrepancy function for A. We adopt the technique of [11] to this
compositional setting for computing a local version of IS discrepancy that uses only the Lipschitz constants and the Jacobian
matrices of the modules. This approach of [11] bounds the distance between two trajectories as an exponential function of the
eigenvalues of the Jacobian matrix.

Input-to-state stability (ISS), its variants and characterization in terms of necessary and sufficient conditions have been one
of the major advances of nonlinear control theory in the last two decades [12]–[14]. Incremental ISS has been used to construct
discrete symbolic models that approximately bisimulate continuous systems [15], [16]. Under additional assumptions about the
stability of the overall system, such as a small-gain condition, it has been shown that a large system can be reduced to a smaller
system with similar behaviors [17], [18]. Our work is the first to connect these ideas to simulation-based safety verification of
composed systems. Moreover, our technique does not rely on any stability assumptions of the composed system.

There has been recent work on verification of delayed differential equations (see, for example, [19] and the references
therein). The algorithm in [19] iteratively computes validated simulations of delayed differential equations as sequences of
Taylor over-approximations of time intervals, and verifies safety property using SMT solvers. Part of its technique can be used
in our approach as a mean for computing validated numerical simulations for delayed differential equations. Our approach,
in addition, involves systematically generating numerical simulations to refine reach sets and dynamically reasoning about
sensitivity of interconnecting networks.

Summary of contributions: (i) We introduce a method for constructing an approximation of a networked dynamical system
with time delay (A) using the IS discrepancy functions of the components (Definition 4). Specifically, we use the collection
of IS discrepancy functions for the subsystems to define a family of dynamical systems M(δ), where the parameter δ defines
the initial state of M . This approach for delayed networks extends our result for delay-free networks [4]. The extension
involves generalizing the model of networked dynamical systems to cover interconnections with delays, which leads to delayed
differential equations, and the construction of the corresponding delayed reduced system.

(ii) We show that M(δ) has a unique trajectory µ, and that any trajectory ξx of A point-wise bloated by the value of µ(t)
contains the reach set of all the trajectories of A starting from a δ-ball around x (Theorem 7). Thus, by simulating A and (the
smaller) M(δ) we can compute bounded-time reach set over-approximations of A.

(iii) We also show that by choosing appropriately small δ’s the over-approximations computed by the above method can be
made arbitrarily precise; modulo the precision of the numerical simulations (Theorem 10).

(iv) We give an algorithm for computing a local version of IS discrepancy function along a trajectory ξx of A using only
the Lipschitz constant and Jacobian matrix of the dynamic mapping of each module.

(v) Using the above results we develop an algorithm for bounded safety verification of nonlinear dynamical systems that
iteratively refines initial set partitions (Algorithm 1). We show that the algorithm is sound and is guaranteed to terminate
whenever the model is robustly safe or unsafe with respect to a given unsafe set. Our experiments with a prototype
implementation of the algorithm show that the approach achieve best performance when verifying networks of stable modules
with light inter-modular couplings.

II. PRELIMINARIES

For a natural number n ∈ N, [n] is the set {1, 2, . . . , n}. For a sequence A of objects of any type with n elements, we refer
to the ith element, i ≤ n by Ai.

We will use the notations from the hybrid Input/Output automaton (HIOA) framework for modeling compositions of
dynamical systems [20], [21]. In this framework, named variables are used to refer to state and input components of models.
Let V be a finite set of real-valued variables. A valuation v for V is a function mapping each variable name to its value in
R. The set of valuations for V is denoted by Val(V ). For any function f : A→ B and a set S ⊆ A, f ⌈ S is the restriction of
f to S. That is, (f ⌈ S)(s) = f(s) for each s ∈ S. So, for a variable v ∈ V and a valuation v ∈ Val(V ), v ⌈ v is the function
mapping {v} to the value v(v). Trajectories capture the continuous evolution of variable valuations over time. A trajectory
for V is a continuous function τ : R≥0 → Val(V ). The set of all possible trajectories for V is denoted by Traj(V ). For
any function f : C → [A → B] and a set S ⊆ A, f ↓ S is the restriction of the range of f to S. That is, for any c ∈ C,
(f ↓ S)(c) = f(c) ⌈ S. In particular, for a variable v ∈ V and a trajectory τ ∈ Traj(V ), τ ↓ v is the trajectory of v defined
by τ .

The results in this paper cover systems with time-delayed trajectories. For notational convenience, we identify trajectories
and their delayed versions as follows. For any trajectory ξ : R≥0 → Val(X), we can uniquely define another function
ξ̄ : R → Val(X) such that (i) ξ̄ ⌈ R≥0 = ξ, and (ii) for any t < 0, ξ̄(t) = ξ(0). That is, ξ̄ has identical valuations as ξ over
the entire domain of ξ, and takes a constant valuation ξ(0) everywhere else. Sometimes we may need to evaluate ξ at t < 0;
this actually means the valuation of ξ̄ at t, which is by definition ξ̄(t) = ξ(0).

Valuations can be viewed as vectors in R|V | dimensional space by fixing some arbitrary ordering on variables. For a vector
v ∈ Rn, ∥v∥ is ℓ2-norm of the vector of variable values. Bδ(v) ⊆ Val(V ) is the closed ball of valuations with radius δ
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centered at v. The notions of continuity, differentiability, and integration are lifted to functions defined over sets of valuations
in the usual way.

A function f : Rn → Rm is Lipschitz if there exists a constant L ≥ 0—called the Lipschitz constant—such that for all
a1, a2 ∈ Rn, ∥f(a1) − f(a2)∥ ≤ L∥a1 − a2∥. A continuous function α : R≥0 → R≥0 is a class K function if α(0) = 0 and
it is strictly increasing. Class K functions are closed under composition and inversion. A class K function α is a class K∞
function if α(x) → ∞ as x → ∞. A continuous function β : R≥0 × R≥0 → R≥0 is called a class KL function if for any t,
β(x, t) is a class K function in x and for any x, β(x, t)→ 0 as t→∞.

III. MODELS AND COMPOSITION

A. Dynamical System Modules

Large system models are built-up by composing smaller component models. In this section, we define component models
and the composition operation. A dynamical system module is specified by a collection of ordinary differential equations
(ODEs), possibly with inputs, and a set of initial states. For reducing notational overhead, we identify output variables with
state variables in this paper but our results can be extended to systems where outputs are distinct in a straightforward manner.

Definition 1. A dynamical module A is a tuple ⟨X,U,Θ, f⟩ where

(i) X is a set of variables called the state variables; valuations of X are called states;
(ii) U is a set of variables called the input variables that are distinct from the state variables;

(iii) Θ ⊆ Val(X) is a compact set of initial states;
(iv) f : R≥0 × Val(X)× Val(U)→ Val(X) is called the dynamic mapping. In addition, f is continuous in the first argument

and Lipschitz continuous with respect to the other two arguments.

The space of input signal U is the set Traj(U) of all continuous trajectories of the input variables U . For an input signal
η ∈ U and an initial state θ ∈ Θ, the solution (or trajectory) of A is a trajectory of ξθ,η : R≥0 → Val(X) such that (i) ξ(0) = θ,
and (ii) for any t ∈ R≥0, the derivative of ξ satisfies the differential equation

ξ̇(t) = f(t, ξ(t), η(t)). (1)

As in Equation (1), we will suppress the subscripts of ξ when the dependence on the initial state and the input trajectory are
clear from context.

Remark 1. Safety verification problems commonly involve computing the set of trajectories up to some bounded time T > 0.
The (global) Lipschitz assumption of the dynamic mapping f and the piecewise continuity of η guarantee that the differential
equation (1) admits a unique global solution for interval [0, T ] with any time bound T > 0 and any initial state θ ∈ Val(X).
In case the trajectories of the system are confined to an invariant set S ⊆ Val(X), the results in this paper would hold for a
locally Lipschitz continuous f with L as the Lipschitz constant over S.

A module A without inputs (U = ∅) is said to be closed; otherwise, A is open. The set of all trajectories of A with respect
to a set of initial states Θ′ ⊆ Θ and a set of input signals U ′ ⊆ U is denoted by Traj(A,Θ′,U ′). We will drop the argument
U ′ for closed modules. The components of modules A and Ai are denoted by XA, UA,ΘA, fA and Xi, Ui,Θi, fi, respectively.

Example 1. FitzHugh-Nagumo (FHN) model [22] is a generic model for excitable media and can be applied to cardiac cells.
The model has two state variables X = {x, v}, where x models the membrane voltage of a cardiac cell and v is an internal
variable. Initially, the variables x, v take values in the ranges [1.4, 1.6] and [0, 0.2] respectively. The input variables for an
FHN model is U = {u1, u2, u3}, where u1, u2 model the voltages of two neighboring cells and u3 models the input pulse
form a pacemaker. The dynamic of the model is:

ẋ = −x3 + 1.1x2 − 0.12x− v + 0.01u1 + 0.01u2 + u3

v̇ = 0.005x− 0.01v
(2)

Next, for a closed module A we define reachable states and safety. A state x ∈ Val(X) is T -reachable if there exists a
trajectory ξ ∈ Traj(A,Θ) and a time t ≤ T such that the trajectory ξ(t) = x. The set of T -reachable states is denoted by
ReachA(Θ, T ) = {ξ(t) : t ≤ T, ξ ∈ Traj(A,Θ)}.

Definition 2. For ϵ ≥ 0 and time T ≥ 0, and an open unsafe set U ⊆ Val(X), A is ϵ-robustly safe up to T with respect to
U if Bϵ(ReachA(Θ, T )) ∩ U = ∅. If there exists some ϵ > 0 for which this condition holds, then A is robustly safe up to T
with respect to U.
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B. Networked Dynamical Systems with Delays

Formally, the composition operation takes a collection of modules and defines a new dynamical system by plugging-in or
identifying the input variables of one subsystem with state variables of another. The resulting system may still have input
variables that are not identified with any of the state variables. A collection of dynamical modules A = {Ai}i∈[N ] are
compatible if they do not share any of the state variables. That is, for any i, j ∈ [N ], Xi ∩Xj = ∅. This condition merely
prevents any unforeseen identification of states and inputs. The collection is closed if ∪i∈[N ]Ui ⊆ ∪i∈[N ]Xi; that is, as a whole,
the network has no free input variable. In this paper, we will develop compositional techniques for analyzing closed networks.

In general, when the output signals from one module are plugged into the input of another module, the latter may receive
these inputs with some delay. Delays arise from transmission, processing, and buffering. In this paper, we assume that all
the signals from one module to another are identically delayed. The signals from the first module to a third module may be
delayed by a different amount from the delay experience by the second module. This is a reasonable assumption when the
delays are dominated by module-level effects as opposed to the individual variable related effects.

For a collection of N modules {Ai}i∈[N ], a delay matrix d ∈ R≥0
N×N gives for each ordered pair (i, j) a non-negative

time-delay constant d(i, j). All the input signal from module Ai to module Aj experience the identical delay of d(i, j). Now
that we have defined dynamical modules and the delay matrix for interconnecting them, we proceed to defining dynamic
networks with delays:

Definition 3. For a compatible and closed collection of dynamical modules {Ai}i∈[N ], and a delay matrix d ∈ R≥0
N×N , a

networked dynamical system, denoted by A = ∥d{Ai}i∈[N ], is the tuple ⟨X,Θ, T ⟩, where
(i) X = ∪i∈[N ]Xi,

(ii) Θ = {θ ∈ Val(X) | θ ⌈ Xi ∈ Θi, for each i}, and
(iii) T is a set of trajectories of A such that ξ ∈ T if and only if for each i ∈ [N ], t ∈ R≥0,

ξ̇i(t) = fi(t, ξi(t), ηi(t)), (3)

where ξi = ξ ↓ Xi and for each input variable u ∈ Ui ∩Xj from j to i, ηi(t) ⌈ u = ξj(t− d(i, j)) ⌈ u.

Recall that for any i, j ∈ [N ] and any time t < d(i, j) we defined ξj(t − d(i, j)) = ξj(0) in Section II. For a networked
dynamical system A defined above, let dM = maxi,j d(i, j) be the maximum delay and C = C([−dM , 0],R|X|) be the space
of continuous functions from [−dM , 0] to R|X|. The trajectories of the network defined in Equation (3) are solutions of the
delayed differential equation [23] ξ̇(t) = f(t,Hξ,dM ,t) with f : R×C → R|X| and Hξ,dM ,t(s) = ξ(t+ s), ∀s ∈ [−dM , 0] such
that f is an aggregate of all the N Equations (3). Since each fi is continuous in t and Lipschitz in the other arguments, we
can verify that f is continuous in t and Lipschitz in Hξ,dM ,t

1. From Theorem 2.1, 2.2 in [23], for any initial state θ ∈ Θ, a
networked dynamical system A has a unique trajectory ξ. With the set of trajectories Traj(A,Θ) as defined above, the set
of bounded time reachable states ReachA(Θ, T ) of the closed networked dynamical system A is defined analogously to that
of closed dynamical modules.

�̇�# = 𝑓#(𝑥#,𝑣#,𝑢##,𝑢#*,𝑢#+)
�̇�# = 𝑓* 𝑥#,𝑣# 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

�̇�* = 𝑓#(𝑥*,𝑣*,𝑢*#,𝑢**,0)
�̇�* = 𝑓* 𝑥*,𝑣* 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

�̇�+ = 𝑓#(𝑥+,𝑣+,𝑢+#,𝑢+*,0)
�̇�+ = 𝑓* 𝑥+,𝑣+ 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

𝑢## 𝑡 = 𝑥* 𝑡 − 𝑑#,*
𝑢*# 𝑡 = 𝑥#(𝑡 − 𝑑*,#)

𝑢#* 𝑡 = 𝑥+ 𝑡 − 𝑑#,+
𝑢+# 𝑡 = 𝑥#(𝑡 − 𝑑+,#)

𝑢** 𝑡 = 𝑥+ 𝑡 − 𝑑*,+
𝑢+* 𝑡 = 𝑥*(𝑡 − 𝑑+,*)

𝑠𝑡𝑖𝑚(𝑡) = 5
1, 𝑡 ∈ [0,1)
0, 𝑡 ∈ [1,400]

𝑠𝑡𝑖𝑚 𝑡 − 400 , otherwise

𝑢#+ 𝑡 = 𝑠𝑡𝑖𝑚(𝑡)

(a) Network topology and dynamics

(b) A trajectory of cell 1

(c) A trajectory of cell 3, with d(1, 3) = 100

(d) A trajectory of cell 3, with d(1, 3) = 150

Fig. 1: A networked dynamical system with three cells and a pacemaker and its sample trajectories

1The norm of H ∈ C is defined as ∥H∥ = supt∈[−dM ,0] ∥H(t)∥.
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Example 2. We consider a network of cardiac cells A1,A2,A3 stimulated by a pacemaker, as illustrated in Figure 1(a). The
cardiac cells follow the FHN model presented in Example 1. The network is defined by associating input of each cell Ai to
the state of another Aj with a nonnegative delay di,j . The pacemaker is modeled as a rectangular wave generator with period
450 and duty cycle 2. We simulate the network by assigning the delays d(1, 2) = d(2, 1) = 70, d(2, 3) = d(3, 2) = 40 and
d(3, 1) = 100 with two different delay values of d(1, 3). A trajectory of cell 1 with d(1, 3) = 100 is plotted in Figure 1(b).
Two trajectories of cell 3 with d(1, 3) = 100 and d(1, 3) = 150 are plotted in (c) and (d) respectively. Not only the trajectory
of cell 3 is shifted in time due to different delay value, but the shape of the trajectories also changes due to the combined
inputs from cell 1 and 2.

IV. INPUT-TO-STATE DISCREPANCY

In this section, we introduce the notion of input-to-state (IS) discrepancy functions for dynamical system modules and
present three approaches for finding them. In Section V, we will use IS discrepancy to develop the approaches for computing
over-approximations of reachable states. We will present a variation of IS discrepancy function in Section VII that can be
computed along a trajectory relative easily.

A. Input to State Discrepancy

Roughly, input-to-state discrepancy (IS discrepancy) of a module A bounds the distance between two trajectories of A in
terms of different initial states and different inputs.

Definition 4. (IS discrepancy) For a dynamical module A = ⟨X,U,Θ, f⟩, a continuous function V : Val(X)2 → R≥0 is an
input-to-state discrepancy function if

(i) ∃ class-K functions α, α such that for any x,x′ ∈ Val(X), α(∥x− x′∥) ≤ V (x,x′) ≤ α(∥x− x′∥), and
(ii) ∃β : R≥0×R≥0 → R≥0 of class-K in the first argument and a class-K function γ such that for any pair of initial states

θ, θ′ ∈ Θ, and pair of input trajectories η, η′ ∈ Traj(U), and t ∈ R≥0,

V (ξ(t), ξ′(t)) ≤ β(∥θ − θ′∥, t) +
∫ t

0

γ(∥η(s)− η′(s)∥)ds, (4)

where ξ = Traj(A, θ, η) and ξ′ = Traj(A, θ′, η′).
(α, α, β, γ) are called the witnesses of the IS discrepancy function.

In the rest of the paper, we make a technical assumption that α−1 and γ are Lipschitz, and β(·, ·) has a Lipschitz continuous
derivative in the second argument. These assumptions enable us to construct a reduced model with well-defined trajectories in
Section V-A.

Remark 2. The discrepancy function (and its witnesses) bounds the maximum distance between two trajectories in terms of
the ℓ2 distance between their input signals and their initial states. This type of discrepancy function is motivated by the notion
of incremental integral input-to-state stability of dynamical modules [14], except that we do not require the β(·, t) in (4)
converges to 0 as t→∞. We made technical assumptions on the Lipschitz continuity of the witness functions. In Section VII,
we propose an algorithm that computes local version of discrepancy functions and witnesses that satisfy all these assumptions.

B. Finding IS discrepancy

In what follows, we describe three well-known methods for obtaining input-to-state stability proofs and here we note that
they can be used to find IS discrepancy functions. In Remark 3, we discuss the limitations of these heuristics. An automatic
and on-the-fly algorithm for finding a local version of IS discrepancy will be introduced in Section VII.

Lipschitz Dynamics: For any dynamical module A with Lipschitz continuous dynamic mapping f and for any bounded
time, we can find an IS discrepancy function of A for that time bound. This version of IS discrepancy will be sufficient for
bounded safety proofs. We note that the problem of computing Lipschitz constant for a function is generally undecidable.
However, for many elementary functions such as trigonometric functions and polynomial functions, the Lipschitz constant can
be computed for any compact set [6]. There are also some heuristics to estimate Lipschitz constant for general functions [24].

Proposition 1. Suppose the dynamic mapping f of module A is Lipschitz in both arguments with Lipschitz constant L. For
any time bound T > 0, V (x,x′)

∆
= ∥x − x′∥ is a discrepancy function with witnesses (α, α, β, γ) where α(∥x − x′∥) =

α(∥x− x′∥) = ∥x− x′∥, β(∥θ − θ′∥, t) = eLt∥θ − θ′∥ and γ(∥u− u′∥) = LeLT ∥u− u′∥.
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Stable Linear Dynamics: Suppose A has dynamic mapping f(x,u) = Cx +Du, where C is a n × n matrix and D is
a n × m matrix. If C is asymptotically stable, then its input-free trajectories converge exponentially and we can get an IS
dependency function with exponentially convergent witness β.

Proposition 2. For linear module A with dynamic mapping f(x,u) = Cx+Du with asymptotically stable matrix C, there
exists λ > 0, such that V (x,x′) = ∥x − x′∥ is a discrepancy function with witnesses (α, α, β, γ) where α(∥x − x′∥) =
α(∥x− x′∥) = ∥x− x′∥, β(∥θ − θ′∥, t) = e−λt∥θ − θ′∥ and γ(∥u− u′∥) = ∥D∥∥u− u′∥.

The positive constant λ can be computed by solving Lyapunov equation [25].
Incremental Integral ISS: The notion of incremental integral input-to-state stability (incremental integral ISS) of dynamical

modules [14] is a generalization of the standard notion of input-to-state stability [8], [12], [13]. A Lyapunov like theorem of
proving incremental integral ISS as well as a converse Lyapunov theorem are presented in [14]. Given a proof of an incremental
integral ISS property of a module, we automatically get its IS discrepancy function (with witnesses).

Definition 5. A dynamical module A is called incremental-integral-input-to-state stable (δiISS) if there exists a class-K∞
function α, a class-KL function β and a class-K function γ such that, for any initial states θ, θ′ ∈ ΘA, for any input signal
η, η′ ∈ UA and any t > 0,

α(∥ξ(t)− ξ′(t)∥) ≤ β(∥θ − θ′∥, t) +
∫ t

0

γ(∥η(s)− η′(s)∥)ds. (5)

where ξ = Traj(A, θ, η) and ξ′ = Traj(A, θ′, η′).

Proposition 3. Given an incremental integral ISS module A with (α, β, γ) as in Definition 5, then V (x,x′) = α(∥x−x′∥) is
a discrepancy function with witnesses (α, α, β, γ) where α(∥x− x′∥) = α(∥x− x′∥) = α(∥x− x′∥), and β, γ given above.

Remark 3. Proposition 1 establishes an IS discrepancy function only using the Lipschitz constant of the dynamic mapping
f . Although, computing Lipschitz constants of arbitrary functions is undecidable in general, for certain classes of polynomial
functions it can be estimated [6]. However, even if the dynamics of the module is stable, IS discrepancy functions obtained by
this method have witnesses β and γ that grow exponentially with time. Incremental-integral-input-to-state stability (Definition 5)
can be proved by constructing an incremental Lyapunov function [14]. For some dynamical models with physical implications,
the incrememtal Lyapunov function may capture the energy of the system. However, constructing the incremental Lyapunov
function is in general a hard problem. For modules with linear dynamics, IS discrepancy can be computed automatically using
Proposition 2.

In Section VII, we will propose a local version of IS discrepancy function, which can be computed automatically from the
Lipschitz constant and the Jacobian matrix of the dynamic mapping f .

V. SMALL APPROXIMATIONS FROM IS DISCREPANCY

In this section we construct scalar (one-dimensional) approximations for an |Xi|-dimensional dynamical module Ai =
⟨Xi, Ui,Θi, fi⟩ (Definition 6) in a network, using input-to-state discrepancy functions. For the sake of a cleaner presentation,
we develop the results for a network consisting of two |X1| and |X2|-dimensional modules A1 and A2 with a two-dimensional
approximation. The general results follow by straightforward extension and are stated in Section V-D.

A. IS Approximation of ∥d{A1,A2}
Consider closed networked dynamical system A = ∥d{A1,A2} composed of two modules A1 = ⟨X1, U1,Θ1, f1⟩ and

A2 = ⟨X2, U2,Θ2, f2⟩ and a delay matrix d ∈ R≥0
2×2. The input signals U2 of A2 are obtained from X1 delayed by d(2, 1)

and the input signals U1 of A1 are obtained from X2 delayed by d(1, 2). Let Vi be an IS discrepancy function for Ai, i ∈ {1, 2}
with witness (αi, αi, βi, γi). For any pair of initial states θ, θ′ in ΘA, let ξ = Traj(A, θ) and ξ′ = Traj(A, θ′) be the unique
trajectories of the network A starting from θ and θ′ respectively. We define θi = θ ⌈ Xi, θ′i = θ′ ⌈ Xi, ξi = ξ ↓ Xi and
ξ′i = ξ′ ↓ Xi. From Definition 3, the restriction of ξi and ξ′i to Xi are trajectories of Ai from θi and θ′i. From Definition 4,
for every t ∈ [0, T ] the following holds:

V1(ξ1(t), ξ
′
1(t)) ≤ β1(∥θ1 − θ′1∥, t) +

∫ t

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds,

V2(ξ2(t), ξ
′
2(t)) ≤ β2(∥θ2 − θ′2∥, t) +

∫ t

0

γ2(∥ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))∥)ds.
(6)

Recall that when a trajectory ξ is evaluated at t < 0, we use the valuation ξ(t) = ξ(0). Next, we introduce the key notion of
a family of IS approximations for A. Each approximation is parameterized by nonnegative reals δ1, δ2 ≥ 0 and is a closed
networked dynamical system M with two main variables m1 and m2. As we shall see in Theorem 7, at any time t, m1 gives an
upper-bound on the distance between two state trajectories of A1 that start from neighboring states at most δ1 apart. Similarly,
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m2 gives an upper-bound on neighboring trajectories of A2. Of course, the distance between two neighboring state trajectories
of A1 depends on (a) their initial states and (b) on the inputs they experience. These inputs in turn are delayed versions of
the state trajectories of A2. So, the dynamics of m1 (and m2) takes into account the impact of both of these factors using the
witnesses of the IS discrepancy functions. Since β1 and β2 witnesses bound the impact of initial states on the discrepancy as
a function of time, the dynamics of m1 (and m2) are time varying.

Definition 6. (IS approximation or reduced model) For a pair of nonnegative constants (δ1, δ2), the (δ1, δ2)-IS approximation
of a networked dynamical system A = ∥d{A1,A2} is a closed networked dynamical system M = ⟨XM ,ΘM , TM ⟩ where

(i) XM = {m1,m2},
(ii) ΘM = {θ} where θ ⌈ mi = βi(δi, 0), for i ∈ {1, 2}, and

(iii) for any trajectory µ of XM , µ ∈ TM if and only if

µ̇1(t) = β̇1(δ1, t) + γ1 ◦ α−1
2 (µ2(t− d(1, 2)))

µ̇2(t) = β̇2(δ2, t) + γ2 ◦ α−1
1 (µ1(t− d(2, 1))).

(7)

Here µi = µ ↓ mi and β̇i(δi, t) is a short hand for ∂
∂tβi(δi, t).

The dynamics of the closed reduced network M is defined syntactically in terms of the IS-discrepancy functions of the dynamic
modules A1 and A2 and the delay matrix. The witness functions α−1

1 , γ1, etc., are Lipschitz continuous and Lipschitz functions
are closed under composition. Therefore, the delay differential equation (7) has a unique solution. Since M has a single initial
state, it is completely deterministic. Note that both the initial state and the dynamics of M depend on the choice of the
parameters δ1 and δ2. In Theorem 7 we relate m1 and m2 with the divergence between trajectories of A1 and A2. Specifically,
if µ is the trajectory of a (δ1, δ2)-IS approximation then µi = µ ↓ mi(t) gives an upper bound on the distance between the
trajectories of Ai starting from initial states that are at most δi apart.

B. Over-approximation with IS Discrepancy

For any pair of non-negative reals δ = (δ1, δ2) and any state x ∈ Val(XA), we define

Bδ(x) = Bδ1(x ⌈ X1)×Bδ2(x ⌈ X2)

as the product of the δi-balls around x ⌈ Xi. Given a pair of discrepancy functions V = (V1, V2) for A1 and A2, a state
m ∈ Val(XM ) of M naturally defines a sublevel set LV (m) ⊆ Val(XA)× Val(XA):

LV (m) = {(x,x′) | ∀i ∈ {1, 2}, Vi(x ⌈ Xi,x
′ ⌈ Xi) ≤m ⌈ mi}.

This set is the intersection of the (m ⌈ mi)-sublevel sets of Vi. For a state x ∈ Val(XA) of A and a state m ∈ Val(XM ) we
define

BV
m(x) = {x′ ∈ Val(XA) | (x,x′) ∈ LV (m)}

as the subset of states of A for which (x,x′) lies in the sublevel set defined by m.
We will now prove a sequence of results that ultimately established in Lemma 6 that the trajectory of M gives an upper

bound on the discrepancy of A. That is, at any time t ≥ 0

β1(∥θ1 − θ′1∥, t) +
∫ t

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds ≤ µ1(t)

β2(∥θ2 − θ′2∥, t) +
∫ t

0

γ2(∥ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))∥)ds ≤ µ2(t).

(8)

From the construction of M , we observe that at time t = 0, the above inequalities hold. Moreover, the first derivatives of the
right-hand sides upper bound those of the left-hand sides at time t = 0. However, this property at t = 0 does not immediately
generalize to all t > 0. In our proof, we first construct a strict upper bound of the left-hand sides of (8) that holds for all t,
and then show that this bound converges to µ(·).

First, for any positive ϵ > 0, we construct a pair of ϵ-factor trajectories (µ1ϵ, µ2ϵ) with derivatives ϵ-close to the trajectory
of µ in (7) and show that these trajectories strictly upper-bound the discrepancy functions of V1 and V2.

For any δ1, δ2 ≥ 0 and any ϵ > 0, a pair of trajectories µ1ϵ, µ2ϵ : R≥0 → R≥0 are defined as solutions to the differential
equations:

µ̇1ϵ(t) = β̇1(δ1, t) + γ1 ◦ α−1
2 (µ2ϵ(t− d(1, 2))) + ϵ, and

µ̇2ϵ(t) = β̇2(δ2, t) + γ2 ◦ α−1
1 (µ1ϵ(t− d(2, 1))) + ϵ, (9)
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with µ1ϵ(0) = β1(δ1, 0) + ϵ and µ2ϵ(0) = β2(δ2, 0) + ϵ. The right-hand side of Equation (9) is Lipschitz, and therefore, the
solutions µ1ϵ and µ2ϵ are well-defined differentiable functions of time. For any two initial states of A, θ, θ′, we define two
differentiable functions g1, g2 : R≥0 → R:

g1(t) = µ1ϵ(t)− β1(δ1, t)−
∫ t

0
γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds,

g2(t) = µ2ϵ(t)− β2(δ2, t)−
∫ t

0
γ2(∥ξ1(s− d(2, 1))− ξ′1(s− d(2, 1))∥)ds.

(10)

Recall that ξ = Traj(A, θ) and ξ′ = Traj(A, θ′) are the trajectories of A starting from θ and θ′. The following proposition
states that if g1(t), g2(t) are positive for all t ≥ 0, then the distance between trajectories ξ and ξ′ are bounded by (µ1ϵ, µ2ϵ).

Proposition 4. Consider any non-negative pair δ = (δ1, δ2) and initial states θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ =
Traj(A, θ) and ξ′ = Traj(A, θ′). Then, for any ϵ > 0, t ≥ 0, if g1(t), g2(t) > 0, then

V1(ξ1(t), ξ
′
1(t)) < µ1ϵ(t), and V2(ξ2(t), ξ′2(t)) < µ2ϵ(t).

Proof. Here we prove the bound for V1; the bound for V2 follows by symmetry. For any t ≥ 0, since g1(t) > 0, from
Equation (10) we have

µ1ϵ(t) > β1(δ1, t) +

∫ t

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds. (11)

From θ′ ∈ Bδ(θ), we have ∥θ1 − θ′1∥ ≤ δ1. Since β1(·, t) is a class-K function, it follows that

β1(δ1, t) ≥ β1(∥θ1 − θ′1∥, t).

Thus, Equation (11) becomes

µ1ϵ(t) > β1(∥θ1 − θ′1∥, t) +
∫ t

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds.

By applying Equation (6), it follows that

µ1ϵ(t) > β1(∥θ1 − θ′1∥, t) +
∫ t

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds ≥ V1(ξ1(t), ξ′1(t)).

The next lemma establishes that we can drop the assumption about the positivity of g1 and g2 and still arrive at the conclusion
of Proposition 4.

Lemma 5. Consider any non-negative pair δ = (δ1, δ2), and initial states θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ = Traj(A, θ)
and ξ′ = Traj(A, θ′). Then, for any ϵ > 0, t ≥ 0,

V1(ξ1(t), ξ
′
1(t)) < µ1ϵ(t) and V2(ξ2(t), ξ′2(t)) < µ2ϵ(t).

Proof. By Proposition 4, it suffices to prove that for all t ≥ 0, g1(t), g2(t) > 0. At t = 0, by (10)

g1(0) = β1(δ1, 0) + ϵ− β1(δ1, 0) = ϵ > 0.

Similarly, g2(0) > 0. Suppose for the sake of contradiction that ta > 0 is the first time when g1(t), g2(t) > 0 is violated. From
the continuity of g1, g2, we have that the both of the following conditions hold:

(i) g1(t), g2(t) > 0 for all t ∈ [0, ta), and
(ii) g1(ta) = 0 or g2(ta) = 0.

Without loss of generality, we assume g1(ta) = 0. From the Mean value theorem, we know that there exists some time
tb ∈ (0, ta) such that

ġ1(tb) =
g1(0)− g1(ta)

0− ta
≤ − ϵ

ta
< 0. (12)

We can bound the derivative ġ1(tb) as:

ġ1(tb) = µ̇1ϵ(tb)−
d

dt

(
β1(δ1, tb) +

∫ tb

0

γ1(∥ξ2(s− d(1, 2))− ξ′2(s− d(1, 2))∥)ds
)
.

Plugging the right-hand side of Equation (9) into the above equation, it follows:

ġ1(tb) = β̇1(δ1, tb) + γ1 ◦ α−1
2 (µ2ϵ(tb − d(1, 2))) + ϵ− β̇1(δ1, tb)− γ1(∥ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))∥)

= ϵ+
(
γ1 ◦ α−1

2 (µ2ϵ(tb − d(1, 2)))− γ1(∥ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))∥)
)
.

(13)
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From condition (i), we know g2(tb − d(1, 2)) > 0. It follows from Proposition 4 that

µ2ϵ(tb − d(1, 2)) > V2(ξ2(tb − d(1, 2)), ξ′2(tb − d(1, 2))). (14)

From Definition 4, we have V2(ξ2(tb), ξ′2(tb)) ≥ α2(∥ξ2(tb−d(1, 2))−ξ′2(tb−d(1, 2))∥). Equation (14) yields µ2ϵ(tb−d(1, 2)) >
α2(∥ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))∥). Because γ ◦ α−1

2 is a class-K function, it follows that

γ1 ◦ α−1
2 (µ2ϵ(tb − d(1, 2))) ≥ γ1(∥ξ2(tb − d(1, 2))− ξ′2(tb − d(1, 2))∥).

Combining the above equation with Equation (13), we have that ġ1(tb) ≥ ϵ > 0, which contradicts to Equation (12).

Lemma 5 shows that for any ϵ > 0, the ϵ-factor trajectories µ1ϵ and µ2ϵ give strict upper bounds on the distance between
corresponding trajectories of the original modules A1 and A2. In the following lemma, we show that as ϵ→ 0, µiϵ converges
to the trajectory µ ↓ mi; recall that µ is the trajectory of the IS approximation M . It follows that the trajectory µ indeed
bounds the divergence of any trajectories of A.

Lemma 6. Consider any non-negative pair δ = (δ1, δ2) and initial states θ, θ′ ∈ ΘA such that θ′ ∈ Bδ(θ). Let ξ =
Traj((A, θ)), ξ′ = Traj((A, θ′)), and µ be the trajectory of A’s (δ1, δ2)-IS approximation M . Then for all t ≥ 0,

(ξ(t), ξ′(t)) ∈ LV (µ(t)).

Proof. For brevity we write µ ↓ mi as µi. By integrating both sides of (7) with initial condition µ1(0) = β1(δ1, 0) and
µ2(0) = β2(δ2, 0), we have,

µ1(t) = β1(δ1, t) +
∫ t

0
γ1 ◦ α−1

2 (µ2(s− d(1, 2)))ds,
µ2(t) = β2(δ2, t) +

∫ t

0
γ2 ◦ α−1

1 (µ1(s− d(2, 1)))ds,
(15)

Similarly, by integrating Equation (9), we have

µ1ϵ(t) = β1(δ1, t) +
∫ t

0
γ1 ◦ α−1

2 (µ2ϵ(s− d(1, 2)))ds+ ϵ(1 + t)

µ2ϵ(t) = β2(δ1, t) +
∫ t

0
γ2 ◦ α−1

1 (µ1ϵ(s− d(2, 1)))ds+ ϵ(1 + t).
(16)

Define h(t) ∆
= ∥µ1(t)− µ1ϵ(t)∥+ ∥µ2(t)− µ2ϵ(t)∥. Plugging in Equation (15) and (16) into the definition of h(t), we have:

h(t) ≤ 2ϵ(t+ 1) +
∫ t

0
∥γ1 ◦ α−1

2 (µ1ϵ(s− d(1, 2)))− γ1 ◦ α−1
2 (µ1(s− d(1, 2)))∥ds

+
∫ t

0
∥γ2 ◦ α−1

1 (µ2ϵ(s− d(2, 1)))− γ2 ◦ α−1
1 (µ2(s− d(2, 1)))∥ds

(17)

We will bound the two integrals of above inequality in (18) and (19). The property of delay function implies that for any
t ∈ [0, d], µ(t− d) = µ(0). By splitting the integral intervals, we have∫ t

0
∥γ1 ◦ α−1

2 (µ1ϵ(s− d(1, 2)))− γ1 ◦ α−1
2 (µ1(s− d(1, 2)))∥ds

=
∫ d(1,2)

0
∥γ1 ◦ α−1

2 (µ1ϵ(0))− γ1 ◦ α−1
2 (µ1(0))∥ds+

∫ t−d(1,2)

0
∥γ1 ◦ α−1

2 (µ1ϵ(s))− γ1 ◦ α−1
2 (µ1(s))∥ds

≤ d(1, 2)∥γ1 ◦ α−1
2 (µ1ϵ(0))− γ1 ◦ α−1

2 (µ1(0))∥+
∫ t

0
∥γ1 ◦ α−1

2 (µ1ϵ(s))− γ1 ◦ α−1
2 (µ1(s))∥ds

(18)

By using the same trick, we rewrite the last term of (17):∫ t

0
∥γ2 ◦ α−1

1 (µ2ϵ(s− d(2, 1)))− γ2 ◦ α−1
1 (µ2(s− d(2, 1)))∥ds

≤ d(2, 1)∥γ2 ◦ α−1
1 (µ2ϵ(0))− γ2 ◦ α−1

1 (µ2(0))∥ds+
∫ t

0
∥γ2 ◦ α−1

1 (µ2ϵ(s))− γ2 ◦ α−1
1 (µ2(s))∥ds

(19)

From the Lipschitz property of γ1 ◦ α−1
2 and γ2 ◦ α−1

1 , we can find a constant L > 0 such that ∥γ1 ◦ α−1
2 (µ1ϵ(t)) − γ1 ◦

α−1
2 (µ1(t))∥ ≤ L∥µ1(t) − µ1ϵ(t)∥ and ∥γ2 ◦ α−1

1 (µ2ϵ(t)) − γ2 ◦ α−1
1 (µ2(t))∥ ≤ L∥µ2(t) − µ2ϵ(t)∥. Using the Lipschitz

condition with (18) and (19), Equation (17) becomes

h(t) ≤ 2ϵ(t+ 1 + LdM ) +

∫ t

0

Lh(s)ds,

with dM = max{d(1, 2), d(2, 1)}. By Gronwall-Bellman inequality [26], it follows that

h(t) ≤ 2ϵ(t+ 1 + LdM ) + 2ϵL

∫ t

0

(s+ 1 + LdM )eL(t−s)ds. (20)

It follows that for any t ∈ R≥0, the integral
∫ t

0
(s + 1)eL(t−s)ds is bounded. Thus h(t) → 0 as ϵ → 0, which implies both

∥µ1(t)− µ1ϵ(t)∥ → 0 and ∥µ2(t)− µ2ϵ(t)∥ → 0 as ϵ→ 0. Using Lemma 5, and taking the limit of ϵ→ 0, it follows that

V1(ξ1(t), ξ
′
1(t)) ≤ µ1(t) and V2(ξ2(t), ξ′2(t)) ≤ µ2(t).
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That is, for any t ≥ 0, (ξ(t), ξ′(t)) ∈ LV (µ(t)).

Theorem 7 states that the reach set of any (large) networked dynamical system A = A1∥A2 from a set of states can be
over-approximated by bloating an individual execution ξ of A by a factor that is entirely determined by (a) IS discrepancy
functions V1 and V2 of its (smaller) modules, and (b) the trajectory µ of the reduced (2-dimensional) dynamical system M
that is its IS approximation.

Theorem 7. Consider a networked dynamical system A = ∥d{A1,A2} with IS discrepancy functions V = (V1, V2). Let
ξ = Traj(A, θ) for some initial state θ ∈ ΘA. For any nonnegative pair δ = (δ1, δ2) suppose µ is the trajectory of the
(δ1, δ2)-IS approximation M . Then, for any T ≥ 0

ReachA(Bδ(θ), T ) ⊆
∪

t∈[0,T ]

BV
µ(t)(ξ(t)).

Proof. This follows from the bounds on the distance between trajectories established above. For any x ∈ ReachA(Bδ(θ), T ),
there exists an initial state θ′ ∈ Bδ(θ), a trajectory ξ′ = Traj(A, θ′) and a time t ∈ [0, T ] such that ξ′(t) = x. It follows by
Lemma 6 that (ξ(t), ξ′(t)) ∈ LV (µ(t)), and therefore, x ∈ BV

µ(t)(ξ(t)).

Theorem 7 establishes an over-approximation of the set of reachable states from a δ-ball Bδ(θ). To compute the set of
reachable states from a compact initial set ΘA, we can proceed as usual by first computing a δ-cover of ΘA, and then
computing the union of reach sets of the covers using the Theorem.

Remark 4. Theorem 7 does not require A to be stable or any global property to hold for the IS discrepancy functions. To
use Theorem 7 we need to (a) find IS discrepancy functions for the modules, and (b) compute individual trajectories ξ of
complete network A and µ of M . Fortunately, for large classes of nonlinear dynamical systems there exist scalable numerical
techniques for (b). This is one of the motivations of this work. For linear and some special classes of nonlinear systems (a)
can be solved automatically (see Section IV-B). In Section VII we will present an algorithmic approach for computing local
versions of the discrepancy function.

C. Precision of the IS Approximation

The error in the over-approximation obtained from the reduced model is determined by the trajectories of the reduced model.
In the following, we show that the over-approximation error can be made arbitrarily small with sufficiently small but positive
δ1, δ2.

Lemma 8. Consider any T > 0, t ∈ [0, T ], and a sequence of pairs of positive reals δk = (δk1 , δ
k
2 ) converging to (0, 0). For

the trajectory (µk) of the corresponding (δk1 , δ
k
2 )-IS approximation Mk, |(µk ↓ mi)(t)| → 0 for i ∈ {1, 2}.

Proof. Fix a T > 0 and δk = (δk1 , δ
k
2 ). This defines the (δk1 , δ

k
2 )-IS approximation Mk and its trajectory µk. We will prove

that for all t ∈ [0, T ],
|(µk ↓ m1)(t)|+ |(µk ↓ m2)(t)| → 0,

as δk → 0. From here on, we drop the superscript k and use the notations setup earlier: µi = µ ↓ mi, etc.
From the first row in Equation (15), applying the same trick as (18), we have that

|µ1(t)| ≤ β1(δ1, t) + d(1, 2)|γ1 ◦ α−1
2 (µ2(0))|+

∫ t

0

|γ1 ◦ α−1
2 (µ2(s))|ds (21)

From the Lipschitz property of γ1 ◦α−1
2 , there exists some L > 0, such that |γ1 ◦α−1

2 (µ2(s))− γ1 ◦α−1
2 (0)| ≤ L|µ2(s)− 0|.

Since γ1 ◦ α−1
2 is of class-K, it follows that

|γ1 ◦ α−1
2 (µ2(s))| ≤ L|µ2(s)|.

From Equation (15), we observe that for i ∈ {1, 2}, µi(t) are nonnegative scalars. We drop the absolute value symbols | · |.
Then Equation (21) reduces to

|µ1(t)| ≤ β1(δ1, t) + d(1, 2)Lβ1(δ1, 0) +

∫ t

0

L|µ2(s)|ds. (22)

Since β1(δ1, t) is bounded in compact intervals, define

CT
1 (δ1) = sup

t∈[0,T ]

β1(δ1, t), (23)

as the upper bound of the function β1(·, t) in interval t ∈ [0, T ]. It follows from Equation (22) that

|µ1(t)| ≤ CT
1 (δ1) + d(1, 2)Lβ1(δ1, 0) +

∫ t

0

L|µ2(s)|ds. (24)
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Starting from the second row of Equation (15), and following similar steps from Equation (21)-(24), we have:

|µ2(t)| ≤ CT
2 (δ2) + d(2, 1)Lβ2(δ2, 0) +

∫ t

0

L|µ1(s)|ds. (25)

Summing up Equation (24) and (25), by applying the Gronwall-Bellman inequality, we have

|µ1(t)|+ |µ2(t)| ≤ (CT
1 (δ1) + CT

2 (δ2) + d(1, 2)Lβ1(δ1, 0) + d(2, 1)Lβ2(δ2, 0))e
Lt.

For i ∈ {1, 2}, βi(·, ·) is a class-K function in the first argument, thus βi(δki , 0) → 0 and Ci(δ
k
i ) → 0 as δki → 0. It follows

that, |µk
1(t)|+ |µk

2(t)| → 0 as δk → 0.

Proposition 9 follows from the fact that for i ∈ {1, 2}, for any x,x′ ∈ Xi, αi(x− x′) ≤ Vi(x,x′) (Definition 4).

Proposition 9. For dynamical system A with discrepancy function V = (V1, V2), fix any x ∈ XA. For any ϵ > 0, there exists
r > 0, such that BV

r (x) ⊆ Bϵ(x).

Using Lemma 8 and Proposition 9, the next theorem bounding the error on the over-approximation of the reach set follows
in a straightforward fashion.

Theorem 10. Consider a closed dynamical system A = ||d{A1,A2} with IS discrepancy V = (V1, V2). Let ξ = Traj(A, θ)
for some initial state θ ∈ ΘA. For any ϵ > 0, there exists a positive pair δ1, δ2 > 0 such that , for A’s (δ1, δ2)-IS approximation
M , for any T ≥ 0 ∪

t∈[0,T ]

BV
µ(t)(ξ(t)) ⊆ Bϵ(ReachA(Bδ(θ), T )),

where µ is the unique trajectory of M .

If the over-approximation obtained from Theorem 7 is not precise enough to prove safety, then, we can refine the parameters
δ1 and δ2. Then we can compute BV

µ(t)(ξ(t)) for each of the smaller partitions with higher precision. This is the standard
approach used in simulation-based verification [5], [27], [28]. In the next section, we present this algorithm in more detail.

D. Generalizing to Arbitrary Networked Dynamical Systems

The approximation and its analysis presented in the previous section can be extended to closed networked dynamical
systems. Let {Ai}i∈[N ] be a compatible closed collection of dynamic modules and d ∈ R≥0

N×N be a delay matrix. Let
A = ||d{Ai}i∈[N ] be the corresponding closed dynamic network. For any pair of trajectories ξ, ξ′ ∈ Traj(A,Θ), and for each
i ∈ [N ], we define ξi = ξ ↓ Xi and ξ′i = ξ′ ↓ Xi. The next definition gives a natural generalization of Definition 4 to account
for dynamical modules that take inputs from more than one module in the network.

Definition 7. Let Ai = ⟨Xi, Ui, θi, fi⟩ be a dynamic module receiving input signals from a collection of modules {Aj}j∈Ui∩Xj .
An input-to-state discrepancy function for Ai (in this environment) is a continuous function Vi : Val(X)2 → R≥0 with class-K
witnesses (αi, αi, βi) and {γij}(i,j):Ui∩Xj ̸=∅, such that

(i) for any x,x′ ∈ Val(Xi), αi(∥x− x′∥) ≤ Vi(x,x′) ≤ αi(∥x− x′∥), and
(ii) for any pair of initial states θ, θ′ ∈ Θi and input signals ηij , η′ij ∈ Traj(Ui∩Xj) from module Aj to Ai, for each t ≥ 0

Vi(ξi(t), ξ
′
i(t)) ≤βi(∥θ − θ′∥, t) +

∫ t

0

∑
j:Xj∩Ui ̸=∅

γij(∥ηij(s)− η′ij(s)∥)ds,

where ξi and ξ′i are the trajectories of Ai from initial state θ (θ′ respectively) and with input signal ηij (η′ij respectively)
from module Aj .

The set {Aj |Xj ∩ Ui ̸= ∅} is the set of modules that provide inputs to module Ai. Definition 7 allows each Aj providing
an input to Ai to have a different witness γij to the discrepancy function Vi. This flexibility also permits the input signals
from different modules to experience delays to different degrees. Generalizing Definition 6, the IS approximation of A is a
N -dimensional closed deterministic dynamical system M .

Definition 8. For any δ = (δ1, . . . , δN ) ∈ RN
≥0, the δ-IS approximation of A = ||d{Ai}i∈[N ] is a dynamical network

M = ⟨XM ,ΘM , TM ⟩, where
(i) XM = {m1,m2, . . . ,mN},

(ii) ΘM = {θ}, where θ ⌈ mi = βi(δi, 0), for each i ∈ [N ], and
(iii) for any trajectory µ of XM , µ ∈ TM if and only if

µ̇i(t) = β̇i(δi, t) +
∑

j:Xj∩Ui ̸=∅

γij ◦ α−1
j (µj(t− d(i, j))),
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where µi = µ ↓ mi.

The dynamics of the closed reduced network M is defined syntactically in terms of the IS-discrepancy functions of the
constituent modules {Ai}i∈[N ] and the delay matrix d. Once again, from the Lipschitz continuity of the right hand side it follows
that the delay differential equation has a unique solution. The IS approximation M of the original dynamical network A is an
N -dimensional system. The construction of M is defined syntactically only using (a) information of individual modules (IS
discrepancy functions etc.) and (b) the topology and delay matrix for composition. An N -dimensional analogue of Theorems 7
and 10 giving approximations of ReachA in terms of µ(·) can be proven essentially following the same steps.

VI. FROM SIMULATIONS TO PROOFS

Theorem 7 gives us a recipe for verifying bounded time invariants (or safety properties) of closed networks, only by
numerically computing trajectories of the whole network A and the trajectories of the statically computed reduced IS
approximation M . That is, detailed static analysis of the complete model A becomes unnecessary in this method. In this
section, we develop this idea further and provide the details of the verification algorithm.

A. Verification Algorithm

The algorithm involves simulations or numerical computation of trajectories of dynamical systems. We proceed by first
defining what we mean by simulations. Given a closed networked dynamical system A without delay (d(i, j) = 0 for all i, j),
an initial state θ, let ξ = Traj(A, θ) be the actual trajectory of A from the initial state θ. For a step size τ > 0, validated ODE
solvers such as [29]–[31] compute a sequence of boxes R1, R2, . . . , Rl ⊆ Val(XA), such that for each k ∈ [l], t ∈ [(k−1)τ, kτ ],
ξ(t) ∈ Rk. For a desired error bound ϵ > 0, by reducing the step size τ , the diameter of Rk can be made smaller than ϵ. For
delayed differential equations, there are existing techniques for numerical simulation [19], [32]–[34]. Several of these reduce
the problem to simulating ODEs [35]. Specifically, the simulations generated in [19] have validated error bounds. Our safety
verification algorithm assumes the availability of a subroutine Simulate for computing numerical simulations that meet the
following definition.

Definition 9. Consider a closed network A, an initial state θ, a time bound T , an error bound ϵ > 0, and time step τ > 0.
Let ξ = Traj(A, θ) denote the trajectory of A from the initial state θ. A (θ, T, ϵ, τ)-simulation trace is a finite sequence
ϕ = ⟨R0, t0⟩, ⟨R1, t1⟩, . . . , ⟨Rl, tl⟩ where

(i) t0 = 0, tl = T , and ∀ k ∈ [l], tk − tk−1 ≤ τ ,
(ii) ∀k ∈ [l] and ∀t ∈ [tk−1, tk], ξ(t) ∈ Rk, and

(iii) ∀k ∈ [l], dia(Rk) ≤ ϵ.

In Algorithm 1 the subroutine Simulate(A, θ, T, ϵ, τ) (line 5,17) computes a (θ, T, ϵ, τ)-simulation of the network A as
defined above. For the completeness of the algorithm, it is required that for any precision parameters ϵ, τ > 0, a simulation
trace fulfilling this condition can be computed.

Algorithm 1: Bounded verification algorithm
input: A,U, ϵ0, δ0, T, {Vi, αi, αi, βi, {γij}}

1 δ ← δ0; ϵ← ϵ0;R← ∅;
2 C ← Partition(ΘA, δ, ϵ);
3 while C ̸= ∅ do
4 for (θ, δ, ϵ) ∈ C do
5 ψ ← Simulate(A, θ, T, ϵ, τ);
6 S ← BloatWithISD(ψ, d, δ, ϵ, τ, {Vi, αi, αi, βi, {γij}}) ;
7 if S ∩ U = ∅ then
8 C ← C\{(θ, δ, ϵ)};R← R∪ S ;
9 else if ∃k,Rk ⊆ U then

10 return (UNSAFE,R)
11 else
12 C ← C\{(θ, δ, ϵ)};
13 C ← C ∪ Partition(ΘA ∩Bδ(θ), (

δ1
2 , . . . ,

δN
2 ), ϵ2 );

14 return (SAFE,R);
15 Subroutine BloatWithISD(ψ, d, δ, ϵ, τ, {Vi, αi, αi, βi, {γij}}) is
16 M ← ISApprox (δ, d, {Vi, αi, αi, βi, {γij}});
17 ϕ← Simulate(M, θM , T, ϵ, τ);
18 ρ← SupByTime(ϕ);
19 S ← BV

ρ (ψ);
20 return S;
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The algorithm takes several inputs: (a) the system model A = ∥d{Ai}i∈[N ], (b) the unsafe set U ⊆ Val(XA), (c) initial
partition parameter δ0, simulation parameter ϵ0, and the time bound T , and (d) a collection {Vi, αi, αi, βi, {γji}} of IS
discrepancy functions and witnesses for the modules in A.

The algorithm proceeds as follows: The set C computed in line 2 is a finite set of triples {(θc, δ, ϵ)}c∈|C|, such that {θc}c∈|C|
is a δ-cover of the initial set ΘA. Each θc is associated with a precision parameter ϵ > 0 and positive real-valued vector δ. For
each triple (θ, δ, ϵ) in the cover set C, the algorithm first computes a simulation trace ψ = ⟨R0, t0⟩, . . . , ⟨Rp, tp⟩ containing the
trajectory ξ = Traj(A, θ) of the (large) networked dynamical system A (line 5). Then the subroutine BloatWithISD bloats
the trace ψ to get a tube S (line 6). We claim that the tube S contains the set of states of A reachable from the set of initial
state Bδ(θ). Then the algorithm checks whether this tube is safe or unsafe. If neither of these cases can be deduced then the
part of the initial set Bδ(θ) is further refined by adding a new partition to C.

The subroutine BloatWithISD is detailed in line 15-20. First, an δ-IS approximation M (line 16) is constructed following
Definition 8. The same Simulate subroutine is then used to compute a simulation trace ϕ = ⟨Q0, t0⟩, . . . , ⟨Qp, tp⟩ of the
trajectory µ = Traj(M, θM ), of the (smaller) reduced model M . Here we assume the time stamps of the sequence ψ match
up with that of ϕ. This can be achieved by using a fixed step solver or through repeated simulations using smaller step sizes.
The sequence ρ computed in line 18 is a sequence of pairs ⟨r0, t0⟩, . . . , ⟨rp, tp⟩, where for each k ∈ [p], rk is a nonnegative real
defined as rk = supm∈Qk

∥m∥. In line 19, the sequence of sets {Rk} is bloated by the sequence of factors {rk} element-wise
to construct a tube S.

B. Analysis of the Verification Algorithm

We establish the soundness and relative completeness of the algorithm in Theorems 11 and 12. Practical scalability of the
algorithm is discussed in Section VIII.

Theorem 11. Algorithm 1 is sound. That is, if it returns SAFE then A is safe up to T , and if it returns UNSAFE then A is
unsafe.

Proof. Suppose the algorithm returns SAFE. For any cover (θ, δ, ϵ) ∈ C, S computed in line 19 is the union of a sequence of
regions {BV

rk
(Rk)}, where ∪k∈[p]Rk contains the trajectory from θ and the sequence of rk upper bounds the trajectory of δ-IS

approximation. It follows from Theorem 7, that ReachA(Bδ(θ), T ) ⊆ S. Thus if S ∩U = ∅, then ReachA(Bδ(θ)) ∩U = ∅.
The algorithm returns SAFE, if all such covers are checked safe. It is straightforward to check that C captures a finite cover
of the initial set

∪
(θ,δ,ϵ)∈C Bδ(θ) ⊇ ΘA. Therefore, we conclude ReachA(ΘA, T ) ∩ U = ∅.

Otherwise if the algorithm returns UNSAFE, there exists at least one set Rk contained in the unsafe set U. It follows that
for the trajectory ξ = Traj(A, θ) and some t ∈ [tk−1, tk], ξ(t) ∈ U.

Theorem 12. Algorithm 1 is relatively complete. That is, if A is robustly safe then Algorithm 1 terminates and returns SAFE
and if A is unsafe then it terminates and returns UNSAFE.

Proof. Suppose that for some ϵ′ > 0, A is ϵ′-robustly safe up to time T . It follows from Definition 2 that

Bϵ′(ReachA(ΘA, T )) ∩ U = ∅.

It follows that line 8 is never executed. For any θ ∈ Θ, we will show that for small enough refinement parameters δ, ϵ > 0,
for any k, dia(BV

rk
(Rk)) < ϵ′. From Proposition 9, we can show that there exists e > 0 such that for rk < e,

BV
rk
(Rk) ⊆ Bϵ′/3(Rk). (26)

From Lemma 8, there exists a δ > 0, for all t ∈ [0, T ], and all i ∈ [N ], |µ(t)| ≤ e/2. For a simulation trace ϕ = ⟨M0, t0⟩, . . . ,
⟨Mq, tq⟩ (line 17), and ϵ ≤ e/2, it follows from Definition 9 that for all k ∈ [q], the diameter dia(Mk) ≤ e/2. Thus for any
k ∈ [q], rk = supm∈Mk

|m| ≤ ϵ+ supt∈[t′l−1,t
′
l]
|µ(t)| ≤ e/2+ e/2 = e. It follows from Equation (26) that by choosing δ ≤ d

and ϵ ≤ e/2, we have BV
rk
(Rk) ⊆ Bϵ′/3(Rk). Notice that the diameter of Rk is bounded by the refinement parameter ϵ. By

choosing ϵ = min{ϵ′/3, e}, it follows that

dia(Bϵ′/3(Rk)) ≤ ϵ′/3 + dia(Rk) ≤ ϵ′/3 + ϵ′/3 < ϵ′.

Thus, after a number of max{log( ϵ0
min{ϵ′/3,e} ), log

δ0
d } refinements, the parameters δ, ϵ are small enough to guarantee that

S ∩ U = ∅. Thus the algorithm returns SAFE.
On the other hand, suppose A is unsafe with respect to an open unsafe set U. There exists an initial state θ, a time t ≥ 0

and a ϵ′ > 0 such that B(ϵ
′ξ(θ, t)) ⊆ U. For the same number of refinement as the robustly safe case, it can be shown that

there exists an BV
rk
(Rk) ⊆ Bϵ′(ξ(θ, t)). It follows that the algorithm returns UNSAFE.
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VII. ON-THE-FLY COMPUTATION OF LOCAL IS DISCREPANCY

The IS discrepancy defined in Definition 5 are global in the sense that the inequalities hold for arbitrary trajectories in the
state space uniformly. While we noted several existing methods for statically computing such global IS discrepancy functions
in Section 2, these methods are guaranteed to work only for certain classes of stable or linear models. Furthermore, even
where these methods work, the bounds they provide can be overtly conservative which negatively affects the performance of
Algorithm 1. To overcome this limitation, we will define a notion of IS discrepancy function (Definition 10) that only needs to
hold for trajectories in a compact set K. This notion turns out to be adequate for bounded time verification because the said
compact set bound K can be inferred from the initial neighborhood of the system using a coarse estimate of the reach set. The
local version of discrepancy was introduced and applied in [11], [28] and similar results have been obtained using other norms
on the Jacobian matrix in [36]. Here we extend the idea to input-to-state discrepancy functions, that is, Algorithm 1 does not
use the final argument {Vi, αi, αi, βi, {γij}} but a local version of IS discrepancy computed from the Lipschitz constants and
Jacobian matrices of dynamical mappings fi of the modules.

A. Local IS Discrepancy

Consider a dynamical module A = ⟨X,U,Θ, f⟩, where the dynamic mapping f is Lipschitz continuous and has a continuous
Jacobian. For a compact set K ⊆ Val(X) and time interval [t0, t1], a trajectory ξ is (K, [t0, t1])-bounded if {ξ(t) : t ∈ [t0, t1]} ⊆
K. In other words, all the states of trajectory ξ in interval [t0, t1] are contained by the set K. For a compact set I ⊆ Val(U),
the notion of (I, [t0, t0])-bounded input signals is similarly defined. Next, we introduce restrictions on Definition 4 to compact
neighborhoods.

Definition 10 (Local IS Discrepancy). For a dynamical module A = ⟨X,U,Θ, f⟩, a compact subset K ⊆ Val(X), a compact
subset I ⊆ Val(U) and time points 0 ≤ t0 ≤ t1, the function V : K2 → R≥0 with class-K witnesses (α, α, β, γ) is the
(K, I, [t0, t1])-local IS discrepancy function of A if

(i) for any x,x′ ∈ K, α(∥x− x′∥) ≤ V (x,x′) ≤ α(∥x− x′∥), and
(ii) for any pair of initial states θ, θ′ ∈ Θ and (I, [t0, t1])-bounded input signals η, η′ ∈ Traj(U), if ξ = Traj(A, θ, η) and

ξ′ = Traj(A, θ′, η′) are (K, [t0, t1])-bounded, then the following holds at any time t ∈ [t0, t1],

V (ξ(t), ξ′(t)) ≤ β(∥θ − θ′∥, t− t0) +
∫ t

t0

γ(∥η(s)− η′(s)∥)ds. (27)

The above definition relaxes Definition 4 so that the right-hand side of (28) just upper bounds distance between all trajectories
contained in set K for an interval [t0, t1] with input signal bounded by I. A similar version of IS approximation can be built
using (K, I, [t0, t1])-local IS discrepancy functions instead of the standard IS discrepancy functions, whose trajectories can be
used to over-approximate all (K, [t0, t1])-bounded trajectories with (I, [t0, t1])-bounded input signals. The definition of local
IS discrepancy can be generalized to the module with input from multiple modules similarly to Definition 7.

For a dynamic network ∥d{A1,A2} and any nonnegative pair δ = (δ1, δ2), we can build an IS approximation following
Definition 6 with (Ki, Ii, [t0, t1])-local discrepancy functions of module Ai for i ∈ {1, 2}. We call this reduced model
(δ,K, I, [t0, t1])-IS approximation, where Ki = K ⌈ Xi, Ii = I ⌈ Ui for i ∈ {1, 2}.

Lemma 13. For any trajectories ξ, ξ′ of dynamic network A = ∥d{A1,A2}, we denote ξi = ξ ↓ Xi, ξ′i = ξ ↓ Xi, ηi = ξ ↓ Ui

and η′i = ξ ↓ Ui, δi = ∥ξi(t0)− ξ′i(t0)∥ for i ∈ {1, 2}. Let M be the (δ,K, I, [t0, t1])-IS approximation with trajectory µ. The
following two statements hold:

(i) If ξi is (Ki, [t0, t1])-bounded and ηi(t − d(i, j)) is (Ii, [t0, t1])-bounded for each i, j ∈ {1, 2} with i ̸= j, then, for all
t ≥ [t0, t1],

(ξ(t), ξ′(t)) ∈ LV (µ(t)).

(ii) For any ϵ > 0, there exists δ > 0 such that the resulting trajectory µ of the (δ,K, I, [t0, t1])-IS approximation satisfies
∥µ(t)∥ ≤ ϵ for all t ∈ [t0, t1].

The proof of the above lemma follows from arguments that are identical to those used to prove Lemmas 6 and 8. The lemma
essentially states that the local IS discrepancy functions can be used instead of the (global) IS discrepancy functions of the
modules as long as we can somehow compute compact sets K, I that conservatively over-approximate the reach sets and the
input sets of the modules over short time intervals.

B. Computing Local IS Discrepancy

For any compact subset of the state space K ⊆ Val(X), any compact set I ⊆ Val(U) and time interval [t0, t1], Lemma 15
(below) will provide a way to compute a (K, I, [t0, t1])-IS discrepancy of any dynamical module A only using the Jacobian
matrix of the dynamic mapping f . Before proving the lemma, we state the following generalized form of the Mean value
theorem (see [11] for a detailed proof).
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Proposition 14. For any differentiable function f : R × Rn × Rp → Rn, any t ∈ R, any x,x′ ∈ Rn, any u,u′ ∈ Rp, the
following holds:

f(t,x′,u′)− f(t,x,u) =
(∫ 1

0

JX(t,x+ (x′ − x)s,u′)ds

)
(x′ − x) +

(∫ 1

0

JU (t,x,u+ (u′ − u)τ)dτ

)
(u′ − u),

where JX = ∂f(t,x,u)
∂X and JU = ∂f(t,x,u)

∂U are the Jacobian matrices of f with respect to x and u.

Lemma 15. For a dynamical module A, compact set K ⊆ Val(X) and time points 0 ≤ t0 ≤ t1, a (K, I, [t0, t1])-local IS
discrepancy function is V (x,x′)

∆
= ∥x− x′∥ with witnesses

β(y, t− t0)
∆
= ea(t−t0)y, and γ(y)

∆
= by, (28)

with a = sup
t∈[t0,t1]
x∈K
u∈I

λ1(
JX + J⊤

X

2
) +

1

2
, b′ = sup

t∈[t0,t1]
x∈K
u∈I

∥JU∥, and b = b′ sup
t∈[t0,t1]

ea(t−t0).

Here λ1(A) denoted the largest eigenvalue of matrix A.

The Jacobian matrix JX depends on the state x, the input u and time t, and the constant a is the maximum eigenvalue of
the symmetric part of the Jacobian (

JX+JT
X

2 ) over the compact ranges K, I and [t0, t1] for x, u, and t. Similarly, b′ is the
2-norm of the Jacobian matrix JU over K and I and finally b is obtained from a and b′.

Proof. Let ξ and ξ′ be two (K, [t0, t1])-bounded trajectories with input signals η, η′. Define y(t) = ξ′(t) − ξ(t) and v(t) =
η′(t)− η(t). For a time t ∈ [t0, t1], using Proposition 14, we have

ẏ(t) = f(t, ξ′(t), η′(t))− f(t, ξ(t), η(t))

=

(∫ 1

0

JX(t, ξ(t) + sy(t), η′(t))ds

)
y(t) +

(∫ 1

0

JU (t, ξ(t), η(t) + τv(t))dτ

)
v(t).

We write JX(t, ξ(t)+sy(t), η′(t)) as JX(t, s) or simply as JX when the dependence on t and s is clear from context. Similarly,
JU (t, ξ(t), η(t) + τv(t)) is written as JU (t, τ) or JU . Then the differentiating ∥y(t)∥2 with respect to t:

d

dt
∥y(t)∥2 =

d

dt
(y(t)⊤y(t)) = ẏ(t)⊤y(t) + y(t)⊤ẏ(t)

= y(t)⊤
(∫ 1

0

(J⊤
X + JX)ds

)
y(t) + v(t)⊤

(∫ 1

0

J⊤
U dτ

)
y(t) + y(t)⊤

(∫ 1

0

JUdτ

)
v(t)

≤ y(t)⊤
(∫ 1

0

J⊤
X + JXds

)
y(t) + y(t)⊤y(t) +

((∫ 1

0

JUdτ

)
v(t)

)⊤ ((∫ 1

0

JUdτ

)
v(t)

)
.

(29)

Let λmax(S) = sup
x∈K

λ1(
JX+J⊤

X

2 ) be the upper bound of the eigenvalues of the symmetric part of JX over S, so J⊤
X +JX ⪯

2λmax(S)I . Since f has continuous Jacobian, then a, b′ defined in (15) are finite. Thus, (29) becomes:

d

dt
∥y(t)∥2 ≤ (2λmax(S) + 1)∥y(t)∥2 + ∥

(∫ 1

0

JUdτ

)
v(t)∥2 ≤ 2a∥y(t)∥2 + b′∥v(t)∥2.

For t ∈ [t0, t1] integrating both sides of the above inequality from t0 to t and using the property of square root
√
x+ y ≤√

x+
√
y, we have

∥y(t)∥2 ≤ e2a(t−t0)

(
∥y(t0)∥2 +

∫ t

t0

b′∥v(τ)∥2dτ
)

=⇒ ∥y(t)∥ ≤ ea(t−t0)∥y(t0)∥+
∫ t

t0

b∥v(τ)∥dτ.

Thus the lemma follows.

For compact sets K ⊆ Val(X), I ⊆ Val(U) and interval [t0, t1], the above lemma gives a local IS discrepancy function over
K, I and a specified time interval and it can be computed from the Jacobian matrices of the dynamical mapping f . If all the
eigenvalues of the symmetric Jacobian matrix JX+J⊤

X

2 are less than −1
2 , from (28), the witness function β is exponentially

decreasing which may result in a tight over-approximation of the reach set. The result can be generalized to modules with
input from multiple modules in a natural way.
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C. Over-approximation of Reach Set based on Local IS Discrepancy

We introduce a subroutine OnTheFlyBolating(ψ, {Ji}, {Li}, δ, ϵ, τ) which replaces the subroutine BloatWithISD() (line 6)
in Algorithm 1. The subroutine takes a simulation trace ψ = ⟨R0, t0⟩, . . . , ⟨Rp, tp⟩, the Jacobian matrices of each module
{Ji}, the Lipschitz constants of each module {Li} and the precision parameters (δ, ϵ, τ) as input, and returns a bloated tube
S = {Si}i∈[p]. For each k ∈ [p], the BloatWithLipschitz (line 2) first computes the compact bound on the reach set R using
only Lipschitz constants. Then using this bound R (as the set denoted by K above), it computes compact sets which bound
the state trajectories and input trajectories over the time interval [tk−1, tk]. In line 3, the local IS discrepancy function of all
modules as established in Lemma 3 are computed. Then a set Sk is computed by bloating the simulation Rk with the trajectory
of a reduced model built with the local discrepancy functions. Following the same arguments of Theorem 7, we can prove
that the tube S contains all trajectories from a δ-ball of the initial state θ of simulation trace ψ. Therefore, the soundness and
completeness of Algorithm 1 stated in Theorem 11 and 12 are maintained.

Algorithm 2: Subroutine OnTheFlyBloating(ψ, {Ji}, {Li}, δ, ϵ, τ).
input: ψ,{Ji},{Li},δ, ϵ, τ

1 for k ∈ [p] do
2 R← BloatWithLipschitz (δ,Rk, {Li}, [tk−1, tk]);
3 {(βi, {γij})} ← ComputeLocalISD(R, [tk−1, tk], {Ji});
4 Sk ← BloatWithLISD(δ,Rk, {βi}, {γij}, [tk−1, tk]);
5 δ ← dia(Sk);
6 return S ;

VIII. EXPERIMENTAL VALIDATION

We discuss experimental results from a prototype implementation of Algorithm 1 in Matlab. We verify bounded time invariant
properties of several linear and nonlinear networked dynamical systems. First, we give a brief overview of the different examples.
Each module in the linear synchronization examples (see [37] for detail) is a 4-dimensional linear dynamical system, and the
overall system is composed of several modules in different topologies. Through communicating with neighbors, the modules
in the network aim to reach synchronization to a common solution. We compute reach sets for several such networks, both
with and without delays. The nonlinear water tank network example is a modified version of the one presented in [38]. In this
example, each module captures the water levels in a group of tanks, that depends on the flows from other tanks. The nonlinear
cardiac cell network with delayed interconnections was shown in Examples 1 and 2.

For the synchronization examples, the IS-discrepancy functions and witnesses are computed statically using Proposition 2.
For the remaining nonlinear examples, the discrepancies are computed on-the-fly using Algorithm 2. In the results presented
here, the time bound is T = 20 seconds and the running time is based on executing the procedure on an Intel i5-3470 CPU. The
columns in Table I present (i) the system being verified, (ii) the number of total state variables, (iii) the number of modules,
(iv) the number of covers for the initial set, (v) the total number of simulation boxes generated, and (vi) the running time of
the algorithm. Our experimental results show that the running time roughly scales linearly with the total number of simulation
boxes generated for both the original system A and its IS approximation M. The number of simulation boxes generated is
proportional to the product of the total number of covers and the time bound. Fixing a compact initial set, the number of covers
generated depends on the level of precision needed to prove (or disprove) safety, which further relying on the distance between
the unsafe set to the reachable states. From the linear synchronization examples, we also observe that verifying time-delayed
networks takes a longer time than delay-free networks of the same dimensions, even if the algorithm produces similar number
of simulations boxes. One source of this difference is that simulating a delayed differential equation is more expensive than
simulating an ODE.

Sample reach tubes computed for the linear synchronization example are shown in Figures 2 and 3. The blue trace (center) is
the simulation of the actual system and the red lines give the upper and lower-bounds computed from the reduced model. These
are networks of two 4-dimensional modules with linear dynamics ẋ1 = A1x1 +B1u1 and ẋ2 = A2x2 + B2u2. The modules
are connected with an inter-modular gain g > 0 and a delay d ≥ 0, such that u1(t) = gx2(t−d) and u2(t) = gx1(t−d). For a
network with Hurwitz A1 and A2, as seen in Figure 2, the diameter of the computed reach tube (for the same size of the initial
set) grows quickly with the gain, but less so with delay. The computed reach tubes of networks with an unstable module are
illustrated in Fig. 3. From the construction of the reduced model (Definition 6), if a module is unstable with β̇i(δ, t) ≥ 0, the
corresponding state component µi of the reduced model is unstable. Thus, even though the whole network may be stable, the
reduced model will be unstable. In Fig. 3, the reach tube in (a), which is corresponding to a smaller delay, is slightly thinner
than the one in (b). From the trajectories (blue curves) in Fig. 3, the whole network corresponding to (a) is stable however
the reduced model does not capture this. This shows that our approach performs relatively well when either the individual
modules are stable or the inter-modular gains are small.
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Systems # V # N # C # sim RT (s)

Linear synchronization I 16 4 128 45440 129.2

Linear synchronization II 24 6 128 45649 135.1

Linear synchronization with Delay I 16 4 64 23168 103.1

Linear synchronization with Delay II 16 4 128 46304 205.8

Nonlinear Water Tank I 10 2 128 45184 127.4

Nonlinear Water Tank II 30 6 128 47232 140.0

Nonlinear cardiac cell network with delay I 6 3 16 6134 22.0

Nonlinear cardiac cell network with delay II 16 8 24 13563 42.5

TABLE I: Experimental results. The columns represent: (1) the system being verified, (2) # state variables, (3) # modules,
(4) # covers of initial set, (5) # total simulation boxes, and (6) run time.

(a) Reach tube for network with delay d = 0 and
gain g = 1

(b) Reach tube for network with delay d = 0
and gain g = 0.5

(c) Reach tube for network with delay d = 10s
and gain g = 0.5

Fig. 2: Reach tubes for network with stable modules projected on one component of x1 . A1 and A2 are both Hurwitz. The
blue curve is a trajectory, and the red curves outline a reach tube from a neighborhood.

Our implementation uses the built-in ODE solver of Matlab and these illustrative experiments assume that the error bounds
of the computation in line 5 and 17 are met by Matlab’s ODE solver, but in reality this may not hold. However, from a
sequence of sample simulation points, one can construct a sequence of simulation boxes satisfying the rigorous requirements
of Definition 9 using methods such as the one presented in [39]. Alternatively, for one could use a validated ODE solver such
as CAPD [29] as in the C2E2 verificaiton tool [27].

(a) Reach tube for network with delay 0 (b) Reach tube for network with delay 10s

Fig. 3: Reach tubes for network with an unstable module projected on one component of x1. A2 is Hurwitz while A1 is not.
The blue curve is a trajectory, and the red curves outline a reach tube from a neighborhood.
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IX. CONCLUSIONS

The technique we present for proving bounded time safety properties of (possibly unstable) nonlinear dynamical networks
with delayed interconnection uses numerical simulations and IS discrepancy functions for the modules. IS discrepancy of a
module Ai, bounds the distance between two (possibly diverging) trajectories of Ai in terms of their initial states and inputs.
It is closely related to the notion of input-to-state stability that is well studied in control theory, but an important distinction is
that it does not require the subsystems or the overall system to be stable. Consequently, our construction of the low dimensional
dynamical network M(δ) with the same delayed interconnection that gives a bound on the divergence of trajectories of A,
does not rely on any global properties like small-gain of the interconnection nor stability of A, but instead only uses the
individual IS discrepancy functions and the numerical simulations of A and M(δ). Further, we also show that by choosing
appropriately small δ’s the overapproximations can be made arbitrarily precise; and therefore our verification algorithm is
sound and relatively complete. To make this technique practical, we introduce a local version of IS discrepancy functions and
present an algorithm to compute them using Lipschitz constant and the Jacobian of the dynamic functions of the modules. The
results suggest some interesting future directions. We plan to extend the results to switched or hybrid systems. An orthogonal
direction is to use similar compositional analysis to synthesize dynamical networks that satisfy safety properties.
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